TIM OLIMPIADE MATEMATIKA INDONESIA
 PEMBINAAN TAHAP 3 CALON PESERTA IMO 52 Rabu, 5 Mei 2011

1. Prove that if $x, y, z>0$ satisfy $x y+y z+z x+2 x y z=1$, then

$$
x y z \leq \frac{1}{8} \text { and } x y+y z+z x \geq \frac{3}{4}
$$

2. (a) Let $x, y, z>0$ and $x y z=x+y+z+2$, then

$$
x y+y z=z x \geq 2(x+y+z) \text { and } \sqrt{x}+\sqrt{y}+\sqrt{z} \leq \frac{3}{2} \sqrt{x y z}
$$

(b) If $x, y, z>0$ and $x y+y z+z x=2(x+y+z)$. Prove that

$$
x y z \leq x+y+z+2
$$

3. The excircles of triangle $A B C$ touch the sides $A B, B C, C A$ at points M, N, P respectively. Let I, O be the incenter and circumcenter of triangle $A B C$. Prove that if $A M N P$ is a cyclic quadrilateral then
(a) the points M, P, I are collinear
(b) the points I, O, N are collinear

Bulgaria TST
4. Do there exist unbounded sequences a_{1}, a_{2}, \cdots of positive real numbers such that for any $n \geq 1$ satisfy

$$
a_{n+2}=\frac{1}{2009}\left(a_{n}+\frac{1}{a_{n+1}}\right)
$$

Bulgaria TST
5. In a country some of the town are connected with roads. Denote by the least positive integer for which there exist a town from which any town can be reached by at most t roads. Prove that there exist towns $A_{1}, A_{2} \cdots, A_{2 t-1}$, such that for any $i \neq j, i=1,2, \cdots, 2 t-2$, $j=2,3, \cdots, 2 t-1$ towns A_{i} and A_{j} are connected by a road if and only if $i+1=j$ Bulgaria TST

