TIM OLIMPIADE MATEMATIKA INDONESIA
 PEMBINAAN TAHAP 3 CALON PESERTA IMO 52
 Jum'at, 6 Mei 2011

1. Let be given $a, b, c>0$ satisfying $a+b+c=1$. Prove that

$$
a^{4} b+b^{4} c+c^{4} a \leq \frac{256}{3125}
$$

2. Find all pairs of positive integers m and n for which

$$
\sqrt{m^{2}-4}<2 \sqrt{n}-m<\sqrt{m^{2}-2}
$$

Czezh-Slovak

3. Let $A B C$ be an acute angled triangle such that $\angle B A C=\frac{\pi}{4}$. Let $C D$ be an altitude and P be arbitrary interior point of segment $C D$. Show that $A P \perp B C$ if and only if $A P=B C$

Czezh-Slovak
4. Find the least positive number x with the following property : if a, b, c, d are arbitrary positive numbers such that whose product is 1 , then

$$
a^{x}+b^{x}+c^{x}+d^{x} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}
$$

Czezh-Slovak

5. Two circles k_{a} and k_{b} are given, whose center lie on the legs of lengths a and n, respectively, of a right triangle. Both circles are tangent to the hypotenuse. Denote the radii of the circle by r_{a} and r_{b}. Find the greatest real number p such that the inequality

$$
\frac{1}{r_{a}}+\frac{1}{r_{b}} \geq p\left(\frac{1}{a}+\frac{1}{b}\right)
$$

Czezh-Slovak
6. The natural number n is called cute if there exist exactly four natural numbers k such that $n+k$ divides $n+k^{2}$
(a) Show that 58 is cute and find the corresponding numbers k
(b) Show that an even number $n=2 p$ where $p \geq 3$ is cute if and only if both p and $2 p+1$ are primes.

Czezh-Slovak

7. In each vertex of a regular n-gon $A_{1} A_{2} \cdots A_{n}$ there lies a certain number of coins : in the vertex A_{k} there are exactly k coins for all $1 \leq k \leq n$. We choose two coins and move each of them into one neighboring vertices in such a way that one is moved clockwise and the other one anti-clockwise. Decide for which n it is possible to achieve, after a finite number of steps, that for each k, there are exactly $n+1-k$ coins in the vertex A_{k}

Czezh-Slovak

