TIM OLIMPIADE MATEMATIKA INDONESIA PEMBINAAN TAHAP 3 CALON PESERTA IMO 52 Jum'at, 6 Mei 2011

1. Let be given a, b, c > 0 satisfying a + b + c = 1. Prove that

$$a^4b + b^4c + c^4a \le \frac{256}{3125}$$

2. Find all pairs of positive integers m and n for which

$$\sqrt{m^2-4} < 2\sqrt{n} - m < \sqrt{m^2-2}$$

Czezh-Slovak

3. Let ABC be an acute angled triangle such that $\angle BAC = \frac{\pi}{4}$. Let CD be an altitude and P be arbitrary interior point of segment CD. Show that $AP \perp BC$ if and only if AP = BC

Czezh-Slovak

4. Find the least positive number x with the following property : if a, b, c, d are arbitrary positive numbers such that whose product is 1, then

$$a^{x} + b^{x} + c^{x} + d^{x} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

Czezh-Slovak

5. Two circles k_a and k_b are given, whose center lie on the legs of lengths a and n, respectively, of a right triangle. Both circles are tangent to the hypotenuse. Denote the radii of the circle by r_a and r_b . Find the greatest real number p such that the inequality

$$\frac{1}{r_a} + \frac{1}{r_b} \ge p\left(\frac{1}{a} + \frac{1}{b}\right)$$

Czezh-Slovak

- 6. The natural number n is called *cute* if there exist exactly four natural numbers k such that n + k divides $n + k^2$
 - (a) Show that 58 is *cute* and find the corresponding numbers k

(b) Show that an even number n = 2p where $p \ge 3$ is *cute* if and only if both p and 2p + 1 are primes.

Czezh-Slovak

7. In each vertex of a regular *n*-gon $A_1A_2 \cdots A_n$ there lies a certain number of coins : in the vertex A_k there are exactly k coins for all $1 \le k \le n$. We choose two coins and move each of them into one neighboring vertices in such a way that one is moved clockwise and the other one anti-clockwise. Decide for which n it is possible to achieve, after a finite number of steps, that for each k, there are exactly n + 1 - k coins in the vertex A_k

Czezh-Slovak